Τετάρτη 6 Απριλίου 2016

Three-Dimensional Finite Element Analysis Surface Stress Distribution on Regular and Short Morse Taper Implants Generated by Splinted and Nonsplinted Prostheses in the Rehabilitation of Various Bony Ridges.

Aims: This study used finite element analysis to compare the biomechanical performance of splinted (SP) and nonsplinted (NSP) prostheses to regular and short length Morse taper implants in the posterior side of the mandible. Methods: The authors used 3-dimensional geometric models of regular implants ([empty set]4 x 11 mm) and short implants ([empty set]4 x 5 mm) housed in the corresponding bone edges of the posterior left mandibular hemiarch involving tooth 34. The 8 experimental groups were: the control group SP (3 regular implants rehabilitated with SP), group 1SP (2 regular and 1 short implants rehabilitated with SP), group 2SP (1 regular and 2 short implants rehabilitated with SP), group 3SP (3 short implants rehabilitated with SP), the control group NSP (3 regular implants rehabilitated with NSP), group 1NSP (2 and 1 short implants rehabilitated with NSP), group 2NSP (1 regular and 2 short implants rehabilitated with NSP), and group 3NSP (3 short implants rehabilitated with NSP). Oblique forces were simulated in the molars (365 N) and premolars (200 N). Qualitative and quantitative analysis of the distribution of Von Mises equivalent stress (implants, components, and infrastructure) was performed using the AnsysWorkbench10.0 software. Results and Conclusions: The results showed that the use of SP provides several advantages and benefits, reducing the stresses placed on the implant surface, on the transmucosal abutment areas and on the interior region of the infrastructure. The use of NSP was advantageous in reducing the stresses on the abutments and in the distal interproximal area of connection between the crowns. (C) 2016 by Mutaz B. Habal, MD.

from #ENT via xlomafota13 on Inoreader http://ift.tt/1UV2sqe
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου