Background
Hearing thresholds of fishes are typically acquired under laboratory conditions. This does not reflect the situation in natural habitats, where ambient noise may mask their hearing sensitivities. In the current study we investigate hearing in terms of sound pressure (SPL) and particle acceleration levels (PAL) of two cichlid species within the naturally occurring range of noise levels. This enabled us to determine whether species with and without hearing specializations are differently affected by noise.
Methodology/Principal FindingsWe investigated auditory sensitivities in the orange chromide Etroplus maculatus, which possesses anterior swim bladder extensions, and the slender lionhead cichlid Steatocranus tinanti, in which the swim bladder is much smaller and lacks extensions. E. maculatus was tested between 0.2 and 3 kHz and S. tinanti between 0.1 and 0.5 kHz using the auditory evoked potential (AEP) recording technique. In both species, SPL and PAL audiograms were determined in the presence of quiet laboratory conditions (baseline) and continuous white noise of 110 and 130 dB RMS. Baseline thresholds showed greatest hearing sensitivity around 0.5 kHz (SPL) and 0.2 kHz (PAL) in E. maculatus and 0.2 kHz in S. tinanti. White noise of 110 dB elevated the thresholds by 0â€"11 dB (SPL) and 7â€"11 dB (PAL) in E. maculatus and by 1â€"2 dB (SPL) and by 1â€"4 dB (PAL) in S. tinanti. White noise of 130 dB elevated hearing thresholds by 13â€"29 dB (SPL) and 26â€"32 dB (PAL) in E. maculatus and 6â€"16 dB (SPL) and 6â€"19 dB (PAL) in S. tinanti.
ConclusionsOur data showed for the first time for SPL and PAL thresholds that the specialized species was masked by different noise regimes at almost all frequencies, whereas the non-specialized species was much less affected. This indicates that noise can limit sound detection and acoustic orientation differently within a single fish family.
from #ENT via xlomafota13 on Inoreader http://ift.tt/1RzQ73z
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου