Πέμπτη 31 Μαρτίου 2016

Adoptive transfer of osteoclast-expanded natural killer cells for immunotherapy targeting cancer stem-like cells in humanized mice

Abstract

Based on data obtained from oral, pancreatic and lung cancers, glioblastoma, and melanoma, we have established that natural killer (NK) cells target cancer stem-like cells (CSCs). CSCs displaying low MHC class I, CD54, and PD-L1 are killed by cytotoxic NK cells and are differentiated by split anergized NK cells through both membrane bound and secreted forms of TNF-α and IFN-γ. NK cells select and differentiate both healthy and transformed stem-like cells, resulting in target cell maturation and shaping of their microenvironment. In our recent studies, we have observed that oral, pancreatic, and melanoma CSCs were capable of forming large tumors in humanized bone marrow, liver, thymus (hu-BLT) mice with fully reconstituted human immune system. In addition, major human immune subsets including NK cells, T cells, B cells, and monocytes were present in the spleen, bone marrow, peripheral blood, and tumor microenvironment. Similar to our previously published in vitro data, CSCs differentiated with split anergized NK cells prior to implantation in mice formed smaller tumors. Intravenous injection of functionally potent osteoclast-expanded NK cells inhibited tumor growth through differentiation of CSCs in humanized mice. In this review, we present current approaches, advances, and existing limitations in studying interactions of the immune system with the tumor, in particular NK cells with CSCs, using in vivo preclinical hu-BLT mouse model. In addition, we discuss the use of osteoclast-expanded NK cells in targeting cancer stem-like tumors in humanized mice—a strategy that provides a much-needed platform to develop effective cancer immunotherapies.



from #ENT via xlomafota13 on Inoreader http://ift.tt/1qlsdmr
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου