Τρίτη 18 Απριλίου 2017

Genetic interaction of DGAT2 and FAAH in the development of human obesity

Abstract

Purpose

DGAT2 is the critical catalyzing enzyme for triglyceride biosynthesis, and excess triglyceride accumulation in fat tissues is a fundamental process for obesity. Mutations in DGAT2 or other genes interacting with DGAT2 associated with adiposity have not been reported in human to date.

Methods

DGAT2 mutation was identified based on our in-home database-exome sequencing 227 young obese subjects (body-mass index (BMI), 35.1–61.7 kg/m2) and 219 lean controls (BMI, 17.5–23.0 kg/m2), further validated in 1190 lean subjects and the pedigree of the proband. The trios of the proband were further subjected to whole-exome sequencing to explore the candidate genes for obesity. The mutations in DGAT2 and FAAH were functionally evaluated in vitro.

Results

We detected two rare variants in DGAT2 with no significant difference between obese and lean individuals. One novel heterozygous nonsense variant c.382C > T (p.R128*) was identified in one obese subject but not in 219 lean subjects and another 1190 lean subjects. Notably, in vitro study showed that R128* mutation severely damaged the TG-biosynthesis ability of DGAT2, and all other R128* carriers in the pedigree were lean. Thus, we further identified a loss-of-function variant c. 944G > T (p.R315I) in FAAH in the proband inheriting from his obese father. Importantly, FAAH overexpression inhibited DGAT2 expression and TG synthesis, while R315I mutant largely eliminated this inhibitory effect.

Summary

We first report loss-of-function mutations in DGAT2 and FAAH in one obese subject, which may interact with each other to affect the adiposity penetrance, providing a model of genetic interaction associated with human obesity.



http://ift.tt/2py4no6

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου