Publication date: 28 March 2017
Source:Cell Reports, Volume 18, Issue 13
Author(s): Johanna S. Jackson, Jonathan Witton, James D. Johnson, Zeshan Ahmed, Mark Ward, Andrew D. Randall, Michael L. Hutton, John T. Isaac, Michael J. O'Neill, Michael C. Ashby
Synapse loss is a key feature of dementia, but it is unclear whether synaptic dysfunction precedes degenerative phases of the disease. Here, we show that even before any decrease in synapse density, there is abnormal turnover of cortical axonal boutons and dendritic spines in a mouse model of tauopathy-associated dementia. Strikingly, tauopathy drives a mismatch in synapse turnover; postsynaptic spines turn over more rapidly, whereas presynaptic boutons are stabilized. This imbalance between pre- and post-synaptic stability coincides with reduced synaptically driven neuronal activity in pre-degenerative stages of the disease.
Graphical abstract
Teaser
Using in vivo two-photon imaging in the rTg4510 tauopathy mouse model, Jackson et al. find that synapse stability is altered during the pre-degenerative stages of tauopathy. Mismatched abnormalities in pre- and post-synaptic turnover coincide with disrupted neuronal activity.http://ift.tt/2o7J6DX
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου